

1411

BE

Teaching Measurement Principles in Context: an Instrumentation Laboratory for Biological Engineers

Maxim Shusteff, David C. Appleyard Matthew J. Lang, Peter T. C. So, Scott R. Manalis Department of Biological Engineering, MIT

CDIO 3rd International Conference June 11, 2007

- Laboratory Fundamentals in Biological Engineering II: Biological Instrumentation and Measurement
- advanced undergraduate laboratory
- modular
 - electronics DNA melting curves analysis
 - mechanics AFM
 - optics fluorescence microscopy, optical trapping
- modules based on measurement systems

- Signals and systems
 - time/frequency (elec.) & spatial domain (imaging)
 - correlation and convolution (elec.), image processing (optics)
- Fourier techniques
 - time/frequency (elec./mech.) & spatial domains (optics)
- Fundamental limits of detection
 - position/force detection (mechanics) & resolution (optics)

- teach general measurement principles in the context of *building* and *using* instrumentation
- culture of tinkering, hands-on building & design, teamwork
- continual infusion of topics from current faculty research efforts

MIT Biological Engineering (BE)

- fusion of molecular life sciences and engineering
- "meta-goals" of 20.309 lab
 - develop quantitative thinking
 - provide experience (comfort?) with multi-domain, interdisciplinary problems
 - learn by doing

Module 1: DNA hybridization analysis

Module 2: Atomic force microscopy

- inexpensive: < \$15k
- mostly off-the-shelf parts
- replicable & scalable (we have 7)

AFM experiments

Imaging

cdio

Module 3: Fluorescence microscopy

Module 4

Undergraduate Optical Trap

- Position detection
- Fluorescence
- Stage motion
- Low cost

CCD

532nm Laser

975nm Laser

Optical trap capabilities

http://www.openwetware.org/wiki/Optical_Trap

Compatibility with CDIO standards

- 1. CDIO as Context *
- 2. CDIO Syllabus Outcomes *
- 3. Integrated Curriculum *
- 4. Introduction to Engineering
- 5. Design-Build Experiences *
- 6. CDIO Workspaces
- 7. Integrated Learning Experiences *
- 8. Active Learning
- 9. Enhancement of Faculty CDIO Skills *
- 10. Enhancement of Faculty Teaching Skills
- 11. CDIO Skills Assessment *
- 12. CDIO Program Evaluation

Color Legend

- specific to 20.309
- provided by MIT BE curriculum
- no direct equivalence
- * "essential" standards

– Course website:

http://www.openwetware.org/wiki/20.309/

- AFM site: <u>http://web.mit.edu/be/teachAFM/</u>
- Optical Trap site: <u>http://www.openwetware.org/wiki/Optical_Trap</u>

