
THE CDIO APPROACH TO ENGINEERING EDUCATION: 4. Designing and Integrating Design-Implement Experiences

Ron Hugo (hugo@ucalgary.ca) Peter Goodhew (goodhew@liv.ac.uk)

Revised June 2010

SESSION FOUR

Explain the rationale for design-implement experiences

Give examples of design-implement experiences in representative CDIO programs

Propose ideas for effective design-implement workspaces

Design-implement experiences are instructional events in which learning occurs through the creation of a product, process, or system

- They should be progressed to a state where:
 - they can demonstrate that they meet the requirements
 - -potential improvements can be identified
- The level of complexity can vary from basic to advanced
- They may focus on **Conceive**, **Design**, **Implement**, **or Operate**, or any combination of these stages

Design-Implement Experience. Also known as

- Design-build
- Design-build-test
- Design-build-fly
- Design-build-compete
- Project-based learning
- Icebreaker
- Two-week creation
- Industrial design project

A framework for students to learn engineering by building things

The Design-Implement Experience may change from year-to-year, but the learning objectives remain the same

SAMPLE LEARNING OBJECTIVES

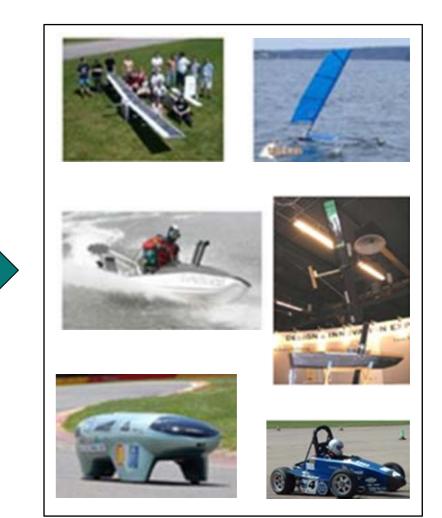
Learning Objectives

Work effectively in a team

Communication

Analyze technical problems

Solve technical problems


Use appropriate eng. methods

Learn how to make estimates

Develop concepts

Use acquired knowledge

Assess the quality of work

Courtesy of KTH

CDIO Standard 5 -- Design-Implement Experiences A curriculum that includes two or more designimplement experiences, including one at a basic level and one at an advanced level

Design-implement experiences

- Add realism to the curriculum
- Illustrate connections between engineering disciplines
- Foster students' creative abilities
- Are motivating for students

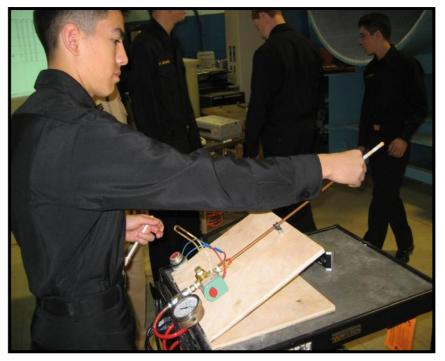
(See Handbook, p. 8)

	Increasing Complexity ->->->				
Activity	I-O	D-I-O		C-D-I-O	
Structure	Structured		Unstructured		
Solution	Known		Unknown		
Team	Individual	Small Team		Large Team	
Duration	Days	Weeks		Months	

LEVEL OF COMPLEXITY #1

Building a model airplane from a kit

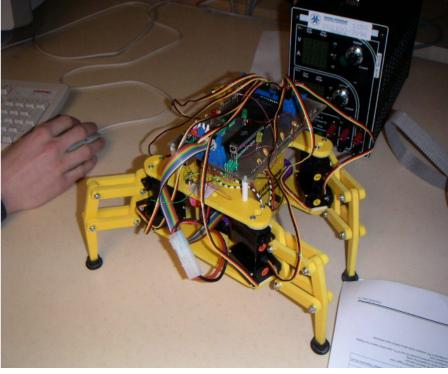
Activity	I-O	
Structure	Structured	
Solution	Known	
Team	Individual	
Duration	Days	



Courtesy of MIT

Building a model rocket from soda straws

Activity	(D)-I-O		
Structure	Structured		
Solution	Known		
Team	Small Team		
Duration	Days		

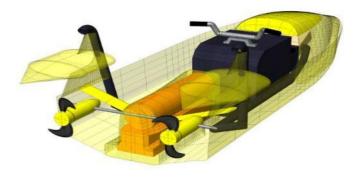

Courtesy of the United States Naval Academy

LEVEL OF COMPLEXITY #3

Building a robot

Activity	D-I-O	
Structure	Structured	
Solution	Unknown	
Team	Small Team	
Duration	Weeks/Months	

Courtesy of Linköping University


LEVEL OF COMPLEXITY #4

Sub-skimmer

underwater/overwater craft

Activity	C-D-I-O		
Structure	Unstructured		
Solution	Unknown		
Team	Large Team		
Duration	Months		

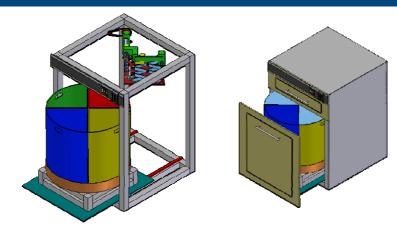
WHAT LEVEL OF COMPLEXITY?

Model Racing Car

Level ?

Activity	(D)-I-O		
Structure	Structured		
Solution	Known		
Team	Small Team		
Duration	Days		

Courtesy of Queen's University Belfast


WHAT LEVEL OF COMPLEXITY?

Domestic Recycling Device

Level ?

Activity	C-D-I-O	
Structure	Unstructured	
Solution	Unknown	
Team	Small Team	
Duration	Months	

Courtesy of Queen's University Belfast

CDIO Standard 6 - Engineering Workspaces

Workspaces and laboratories that support and encourage hands-on learning of product, process, and system building, disciplinary knowledge, and social learning

- · Students are directly engaged in their own learning
- · Settings where students learn from each other
- Newly created or remodeled from existing spaces

WORKSPACE USAGE MODES

Reinforcing Disciplinary Knowledge

Knowledge Discovery

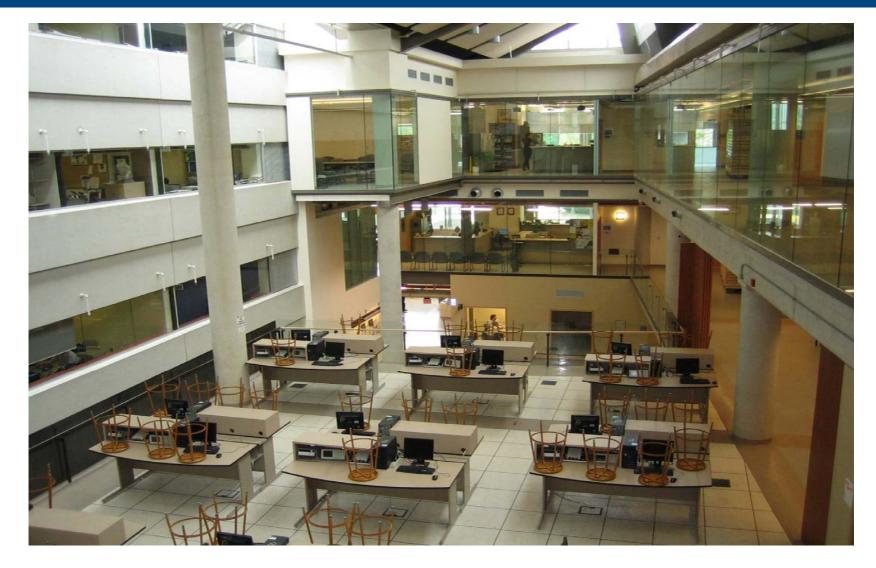
Learning Lab

Hangaren

System Building

Community Building

WORKSPACE CONSIDERATIONS


- Flexibility
- Connectivity
- Safety
- Hours of operation
- Staffing
- Security
- Scheduling and use
- Ownership
- Display devices and areas
- Storage of equipment, materials, and works in progress
- Social space
- Furnishings
- Public address areas and
 - systems
- Cost

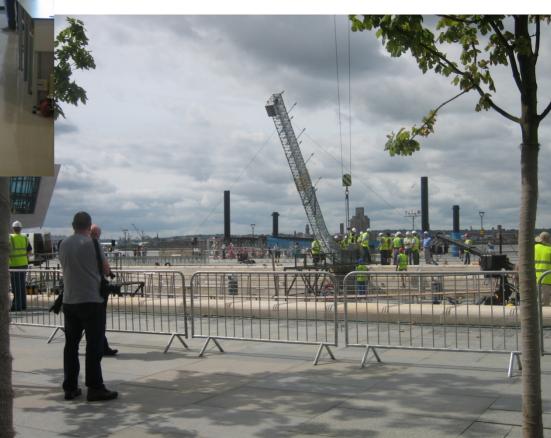
Chalmers University of Technology

SAMPLE CDIO WORKSPACES

Queen's University, Canada

FLEXIBLE CDIO WORKSPACE

University of Liverpool


BIG PROJECT FROM CDIO WORKSPACE

Mecca

Meccano bridge

Full scale plans

ACTIVITY: DISCUSSION

cdio

- Describe at least one basic and one advanced design-implement experience in your curriculum
- 2. Identify the challenges to implementing these experiences for students
- 3. What evidence do you have that these experiences are effective and beneficial?

What are the main challenges to designing and integrating designimplement experiences in your program?

CHALLENGE	A BIG CHALLENGE	A MODERATE CHALLENGE	NOT SO DIFFICULT
Assessing success in products separately from success in learning			
Finding projects that are at the right level complex, but within students' ability to succeed			
Finding appropriate teaching and assessment methods for project-based courses			
Enhancing faculty competence in design- implement skills and in new teaching roles			
Providing relevant experiences in a cost- effective way			