

Sheridan Journey Shaping an Ideal Engineering program based on CDIO approach

June 13, 2013

Presented to Regional Council, North America, Australia, NZ

Sheridan Institute of Technology and Advanced Learning

Sheridan College is one of Canada's leading postsecondary institutions dedicated to the provision of outstanding academic programs and the support of student and graduate success.

Sheridan serves 23,000 full-time students at our campuses in Oakville, Brampton and Mississauga.

POLYTECHNICSCANADA

Polytechnics Canada is a national alliance of Canada's leading research-intensive, publiclyfunded colleges and institutes of technology.

Sheridan University

Vision

 To become Sheridan University, celebrated as global leader in undergraduate professional education.

Mission

• Sheridan delivers a premier, purposeful educational experience in an environment renowned for **creativity and innovation**.

Values

- Academic Excellence,
- Creativity and Innovation
- Global Citizenship

Program Critical Performance:

By the end of this program graduates will have demonstrated the ability to apply engineering principles, methods and techniques to **conceive**, **design**, **implement and operate** value added engineering products, processes and systems in enterprise and societal contexts in compliance with professional practice

• Undergraduate Labs

ENGINEERING SPACE

CES ENGINEERING SPAC

Conceive work spaces

DESIGN WORKSPACES

Design Space

WORKSHOP ENGINEERING

Implement Space, Fabrication Facility

MPLEMENT WORKSPACE

Additive Manufacturing / 3D printing Lab

RNING **PROJECT BASED**

Implement – Operate work space

Ш ENGINEERING SPAC

MPLEMENT WORKSPA

Automation – Implement – Operate work space

Project Based learning , Implement – Operate work space

PROJECT BASED LEARNING

Fabrication Space

INTRODUCTION COURSE TO ENGINEERING

rivities CURRICULAR A

Engineering Club - FSAE Competition

ENGINEERING SPACE

Capstone Projects Space

APPLIED RESEARCH / INDUSTRIA PROJECT

Conceive- Design – Implement – Operate work space

Engineering Education

Engineering Education

Shine Brighter Sheridan School of Engineering

- Creating curricula that inspire innovation and creativity
- Increasing curricular flexibility
- Offering more REAL practice-based engineering experiences,
- Developing students professional skills to a higher standard,

Tradition Curriculum Structure

Curriculum structure is the arrangement of content and associated learning outcomes into instructional units or courses, to facilitate intellectual connections among the courses.

CDIO Based Bus Structure

The idea is that some of the allotted time from two or more courses is transferred to a connecting intellectual element that acts as a "BUS" for the courses.

Advantage: Students can take the conventional courses without necessarily participating in the "BUS" experiences.

CDIO Based Integrative Learning Block (ILB) (Linked or merged structures)

- In ILB structure, two or more faculty members start the term teaching independently, but at some point, the two or more courses flow together and work in common.
- This is most effective when the common work is associated with design project or end-of-term problem that requires the integration of content from two or more courses.

First Year Common Engineering

Term 1 (1st Year) Fall	Academic Credit	Lecture	laboratory	tutorial	Weekly hours	AU Credit	Ave. week	AU=Lec+ 0.5 (lab/tut)	Math+ BS	Math	Basic Science	Comp. Studies	Eng'g Science	Eng'g Design	ES+ED
Calculus 1	3.0	3.0	0.0	2.0	5.0	4.0	12.8	51.2	51.2	51.2	0.0	0.0	0.0	0.0	0.0
Fundamental of Physics I.	3.0	2.0	2.0	2.0	6.0	4.0	12.8	51.2	51.2	0.0	51.2	0.0	0.0	0.0	0.0
Exploring Engineering	3.0	2.0	2.0	2.0	6.0	4.0	12.8	51.2	14.8	0.0	14.8	10.0	14.4	12.0	26.4
Linear Algebra	3.0	3.0	0.0	2.0	5.0	4.0	12.8	51.2	51.2	51.2	0.0	0.0	0.0	0.0	0.0
Required Elective Non-Core Breadth Course : ENGL17889GD Composition and Rhetoric	3.0	3.0	0.0	2.0	5.0	4.0	12.8	51.2	0.0	0.0	0.0	51.2	0.0	0.0	0.0
Sub Total:	15.0	13.0	4.0	10.0	27.0	20.0		256.0	168.4	102.4	66.0	61.2	14.4	12.0	26.4
Term 2 (1st Year) Winter	Academic Credit	Lecture	laboratory	tutorial	Weekly hours	AU Credit	Ave. week	AU=Lec+ 0.5 (lab/tut)	Math+ BS	Math	Basic Science	Comp. Studies	Eng'g Science	Eng'g Design	ES+ED
Calculus 2	3.0	3.0	0.0	2.0	5.0	4.0	12.8	51.2	51.2	51.2	0.0	0.0	0.0	0.0	0.0
Engineering Design and Problem Solving	3.0	2.0	2.0	2.0	6.0	4.0	12.8	51.2	0.0	0.0	0.0	10.0	16.0	25.2	41.2
Fundamental of Physics II.	3.0	2.0	2.0	1.0	5.0	3.5	12.8	44.8	44.8	0.0	44.8	0.0	0.0	0.0	0.0
Computer Programming	3.0	2.0	0.0	2.0	4.0	3.0	12.8	38.4	12.2	12.2	0.0	0.0	26.2	0.0	26.2
Intro to Chemistry for Engineers	3.0	2.0	2.0	0.0	4.0	3.0	12.8	38.4	38.4	0.0	38.4	0.0	0.0	0.0	0.0
Elective Non-Core Breadth Course (Introductory 1000 Level)	3.0	3.0	0.0	0.0	3.0	3.0	12.8	38.4	0.0	0.0	0.0	38.4	0.0	0.0	0.0
										_					

B. Eng. Mechanical Engineering

NDUSTRIAL PROJEC

AVP solutions Inc. – Capstone Project

NDUSTRIAL PROJEC

Automated Stamping System

Curriculum Restructuring – Project Integration

PRINCIPLES of Engineering & Principles of DESIGN (Lab project) (1st Year)

ENGINEERING BY DESIGN (In-class project) (2nd Year) ENGINEERING PRACTICE

> (College / university level project)

(3rd Year)

Industry Project (Industry / Applied Research project) (4th Year)

sheridan Shine Brighter

Curriculum Delivery Mode

Developing solutions through the CDIO approach

- Be recognized as a key resource in helping support innovation, resulting in a positive economic impact for Halton and Peel regions;
- Support student success through Engineering Services /Club/Training opportunities
- Build excellent academic facilities designed to accomplish student and faculty engagement and hands-on learning opportunities.

Thank You

Discussion and Questions