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We describe a curriculum for a two-semester course sequenbardware-software develop-
ment, taking students through a complete development ®fctee various capabilities for an
autonomous mobile robot. The experience of these courseketido insights in teaching large-
scale system development, especially with respect to aofhwtensive courses.
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1. Introduction

In 2005, five faculty from three engineering departments Bt Munched a year-long sequence,
Robotics: Science and Systems (R:SS) | and Il. In the first seme&ge introduced students to the
general topics of robotics, including control, state eation, planning, localization and manipu-
lation. R:SS Il introduced each topic in a week-long lab, aed #sked the students in small teams
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to integrate the various capabilities they had developalarunified system, performing a mini
“course challenge”. In this manner, we took the studentsutjin a complete cycle of developing
all the various capabilities necessary for an autonomousilenmbot. In the second semester, the
students chose one capability of the robot and studied #mallity in more depth. The stated ob-
jective at the end of the second semester was to have thentdadea group (rather than individual
teams) develop a single “Grand Challenge” system capabler®ddnming some real-world task.
The task we chose involved developing a robot that could nameend campus, collect objects
and build a small structure in the hangar.

We spent considerable time teaching sound principles bivaoé¢ design, development and testing
at regular intervals in the course, in order to facilitaeititegration of different capabilities. How-
ever, the experience of teaching these courses has ledaindesy insights in teaching large-scale
systems development, especially with respect to mixedwemnel and software-intensive courses.
We have just begun our third offering of the course sequeate,in this paper we describe the
course structure and our implementation decisions. Aafthlly, we discuss three main insights
in teaching a robotics systems class to undergraduatergtudehe first lesson we learned is the
importance of structure. We progressively allowed theesttsiconsiderable freedom in their final
Grand Challenge project, and we learned that specific fornggimfance were essential to suc-
cess. Secondly, we re-learned a lesson about spiral progthgement, that we believe is worth
reinforcing. Finally, we report lessons on integratingrarsy communication component into the
course, and the lessons we learned in doing this.

2. Course Organization

An overriding theme of the course sequence is the model adlspevelopment, with which we
take the students through the development cycle of capabifor an autonomous vehicle multiple
times. For example, the pedagogical goal of the first semisgteintroduce the students to a broad
spectrum of the technical and systems challenges in maloitmamous systems, leading to a very
structured development of a vehicle with moderate capagsilior the initial course challenge. The
pedagogical goal of the second semester is to allow the stsitie explore a single technical area
in some depth, and to introduce them to the technical and geaiah challenges of developing a
single capability in the context of a larger system. The cowion of the different capabilities
lead to the Grand Challenge vehicle.

While the course contains hardware design issues that Hgtiotbow from a robotics program, the
majority of the conceive-design-implement-operate pssde focussed on software development
issues. In the first semester of the course, the softwardéagewent is very structured and focussed
within teams, which has led to successful deployments afdithrcapability systems. In the second
semester, the entire class form a single team with a sulstantount of freedom to develop new
robotic capabilities in conjunction with a research fagaitlvisor.



3. R:SS|

The first semester, Robotics: Science and Systems |, is adgbsigrintroduce the students to differ-
ent autonomous capabilities and the basic principles th@glie different algorithms. In general,
we expose students to the state of the art in the differemisasaich as estimation, planning and
control. The course has a formal set of learning objectibaswe generally expect at the end of
the course, that

1. the students will be familiar with basic implementati@ikinematics, control theory, state
estimation and planning to implement controllers, estoreaand planners that satisfy the
requirements of specified task;

2. can specify the requirements for an integrated hardwadesaftware design and implemen-
tation of an autonomous system performing a specified task;

3. canimplement the necessary hardware and software can{san an integrated system and
operate the system for an extended and specified time.

The course is structured such that there are two 50-mincitigrks and two 120-minute lab sessions
per week. The lectures generally cover the following topics

e Actuation e Localization

e Control e Map Construction

e Locomotion e Planning

e Sensing and Perception e Grasping and Manipulation
e Camera Models ¢ High-level Vision

e Software Engineering e Simultaneous Localization
e Control Architectures and Mapping

3.1. Structured Laboratories

There are a series of milestones, in the form of labs, thastindents must meet, but the principal
outcome of the class is in the form of the “Course challengeihich students must build upon the
skills of the preceding labs to develop a complete workirtgaomous system. We divide the class
into groups of 3-4 students, and the each group works in [paréifter each lab is complete, the

student teams brief the lecturers in 10 minute presengtiondemonstrate their implementation
and any additional analysis they have performed.



1. Schematics: Layout and Components

The first lab is designed to familiarize the students withrthardware kits, and learn some
basic hardware debugging skills. Students are requirezhim lbasic division of capabilities

between hardware and software, to learn to read and unddrstecuit schematics, and

practice the use of basic hardware skills such as soldendgraultimeter use. We issue a
basic kit of robot components including a partially-popethmicroprocessor board shown
in figure 1, and the students must complete and test theidboar

Figure 1: The robot components issued in the first labordtmbegin the hardware and software
design, implementation and testing.

2. Motor Characterization and Control

The second lab is designed to familiarize the students Wwéh software development prac-
tice. We introduce the software development environmethit@guire the students to practice
the use of software management tools such as version cegt@ms. We pose this instruc-
tion in the context of the mixed hardware-software systenagking for a software-based
characterization of the motor subsystem. Students aredssiih the additional components
shown in figure 2 including the drive motors, and requireddmplete the motor circuitry,
implement a controller in software and evaluate their cal@r.
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Figure 2: The robot components issued in the second labgraddegin the implementation of
motor characterization and closed-loop control.



3. Robot Chassis and Driving

The third lab is the first lab designed to test the studentsdir tinderstand basic navigation
concepts. At this point, the students assemble their hasdwts into a basic robot chassis,
and control their robot using simple feedback loops on theeklvdometers, essentially
navigating using dead-reckoning. The students are issutbdcamponents to allow them to
build the complete frame shown in figure 3. The robot is a bdiierential-drive system,
with the drive wheels at the front and simple caster wheetlseatear.

Figure 3: The robot components issued in the third laboydtobegin the implementation of basic
mobility.

4. Light Sensors and Braitenberg Behaviors

The fourth lab allows us to introduce sensing to the stugdamis implement feedback con-
trol loops around some environmental stimulus. We issusttidents with light sensors, and
require them to implement simple “Braitenberg” type lighttdwing behaviours. One im-
portant lesson from this simple sensing modality is thatidleaviour of the sensor changes
substantially from night to day, and so the students quididgover the need to recalibrate
their systems regularly.

5. Software Engineering and Visual Servoing

The fifth lab introduces some major changes to the robot. | Wot, computation was
largely performed off-board the robot with a serial cabledgonmunicate with the on-board
microprocessor. In this lab, we first issue the students withptop. However, we also
provide the students with a camera (shown in figure 4, leftjrfore sophisticated sensing.

Image processing is an intensive task, so we also introddeega software framework
called Carmen. Carmen is a publicly-available open-sourbetroontrol suite that facili-
tates distributed, networking computation. This allows students to seamlessly parallelize
operations between the on-board laptop and the off-boarllstation. This software frame-
work allows us to introduce new software development pcastfor embedded systems that
the students may not have encountered previously.

The goal of this fifth lab is for the students to implement agareactive ball follower by
extracting recognizable colour features, and then usingepties of the extracted features
(e.g., blob sizes, positions in the image, as shown in figureght) to generate control
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Figure 4: The students are issued with the camera shown exontthe crossbar (left panel) for
more sophisticated environmental sensing in the fifth laiie Gamera is used to track a ball of a
specified colour (middle panel). The students extract featsuch as blob size and location (right
panel) in order to servo the robot to keep the ball in view aralfexed stand-off distance.

commands to keep the ball centred in the image frame and a&cHisplistance away. The
students again encounter the problems of sensor calibratid learn about different colour
spaces.

6. Local Navigation and Environmental Modelling

The sixth lab introduces the students both to additionat@enand to the concepts of a
persistent environmental map. The students are issuedbwitip sensors and also sonar
range sensors. The requirements is for the robot to det@tistacle using the bump sensors,
and then drive around the obstacle, building a map usingtharsensors. An example map
is shown figure 5. The sonar data is useful for range sensingX¥tremely noisy, and the
students must learn more issues in dealing with real-wengisg.

Dl e

Figure 5: An example map of a square obstacle learned frolar stata during the sixth lab. The
grey dots are the individual sonar returns (notice thattsubial noise in the data), and the fitted
green lines are the sides of the square obst&elage courtesy of Slvia Baptista, Mark Vayngrib,
Kevin Wang, Tina Wright.



7. Motion Planning and Global Navigation

The seventh lab introduces the students to motion planmdgaliberate action. The stu-

dents are issued with a map of a maze environment and mustnmeplt a simple planner.

The students learn issues of representation (e.g., diffevays of representing the search
problem) and must also consider computational efficienthierdesign and implementation
of their algorithms.

8. Grasping and Object Transport

The final lab introduces the students to a very different béipa They are issued with
components of a robot arm and gripper shown in figure 6, whiely must assemble and
then control in order to grasp and pick up blocks. Additibnahe students are expected to
use the camera to identify blocks for grasping, and ensatethie robot’s gripper is within
range of the block. As a result, this lab requires the stidenegrate their solution to the
visual servoing lab from earlier in the semester with thesgireg solution. By introducing
the students to the integration of different subsystens @nsingle capability, we lay the
ground work for the final month of the course.

Figure 6: (Left) The robot components issued in the eighblodatory that constitute a robot arm
and gripper. The students mount the arm on the robot (righthplement mobile manipulation
algorithms.

3.2. Course Challenge

The last month of the course is the “Course Challenge”, whiatate has been to build a shelter
on Mars. The objective is for the robot to explore, gatheramals and build a structure in a dy-
namic partially-known environment. The robot will be givepartially specified map of this space
containing obstacles and blocks. However, the environmdhhave dynamic obstacles whose
location and behavior will not be known to the robot. The olvdl have to pick a construction
site (home, or at a given place, or by reasoning), identifynasy building blocks as possible,
bring them to construction site and build as much of a wallicttire as possible at the site.



Figure 7. The complete robot at the end of the last lab.

At this point in the semester, the students should have a letenpbot, such as the one shown
in figure 7, with working implementations of all the necegssoftware subsystems to complete
the challenge. The task itself is very much abstracted franiearobotic construction task, and
could be completed using relatively unintelligent behavid¢diowever, the students are expected to
leverage the skills and implementations from the preceldibg in order to implement a robot that
operates in a deliberative manner. We have stressed thenekegf design and implementation as
much as completion of the specific task.

We also encourage the students to think about the integhatetivare-software design problem.
Although the course is software-intensive, some aspedtseofourse challenge can be simplified
or addressed more easily through innovative hardware. dardpo limit the amount of time that
can be sunk into unstructured hardware modifications, wactthe students to modifications that
cost no more than $50. However, some innovative designs éaezged, including a beautiful
hardware assembly that uses the shape of the building btoakstomatically form a structure as
each block is collected. Some example hardware modificatoa shown in figure 8

4. R:SSII

The second semester course, Robotics: Science and SysteeRigned to allow the students to
explore a topic in mobile autonomy in more depth. Buildinglomfirst semester, that students have
built a relatively small robot that explores, gathers aniddsua structure in a dynamic partially-
known environment. This implementation requires undediteg of the overall issues of robot
control, visual servoing, motion planning, position esttran and manipulation in the laboratory
setting, in a moderately controlled environment.

In the second semester, the class as a group scales thisptéslsomething that approximates a
real-world challenge task that we term a “Grand Challengeblam, in the style of the DARPA



Figure 8: Some example hardware modifications that the stadeake to the basic frame we
provide. On the left, the robot has a collection and releasehanism that automatically organizes
the robots into a structure. In the middle, the robot has anedndifferent collecion and release
mechanism. On the right, the robot has a simple “dumping”haesm, requiring the robot to
place blocks together once collected. However, the rolaohér has been replaced with a circle,
allowing easier motion planning.

Grand Challenge. By scaling the problem up to real-world sizeask the students to address the
challenges of unstructured, outdoor environments, unknearld models, real-world navigation
and locomotion, and real-world manipulation. These ardaalely open research topics in the
literature, and our goal is to get the class working at théiraytedge of robotics research, and
hopefully generate publishable contributions to the stétbe art. As in R:SS |, the course has a
formal set of learning objectives, but we generally expéth@end of the course, that

1. the students will be able to critically evaluate diffearehoices of subsystem designs and
implementations;

2. the students will use their knowledge of autonomous ognptanning or estimation to de-
sign and implement a new capability for an autonomous system

3. and will integrate their new implementation into the costg system.

In addition to the research challenges in autonomy, thesctasst address the engineering chal-
lenges of developing in collaborating teams, developingggmultiple platforms, and developing
software that is reliable enough for others to use. The prabs too large to be tackled by small
teams of 3-4 students; the class as a whole works on a singfiensy We provide a much larger,
pre-built robot base with substantially more capabilifies., larger arm, laser range finders, GPS,
etc.).

4.1. Grand Challenge

The specific “Grand Challenge” problem is a large-scale reraotonomous construction problem.
The robot should, over a long period of time, collect buitgdicomponents located on campus,
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return them to the hangar, and and assemble as large a strastypossible in the hangar. The
robot must have capabilities to do the following:

navigate in a totally unknown environment

locate good construction objects

identify the location of the construction site

retrieve, carry the objects to and place the componentgatdhstruction site
create a structure at the construction site.

4.2. Lecturesand Labs

Our approach in the R:SS Il is to allow the students to sel&oize. We impose little structure

on the labs. We provide one lecture per week in a topic of thdestts choosing (although we
provide an initial set of lectures to begin the semesterthy Wie expectation that the student will
request more instruction in different areas. During lalsiegss, the students working on individual
subsystems meet one-on-one with a faculty advisor. At tlteafreach week we hold design

reviews, where a student from each subsystem group presethis class the current state of the
system and expected plans for the next week.

The class immediately is faced with not only a design prolbertnalso an organization problem,

and and must produce an architecture, design and engiggsan for their autonomous system

within the first month of the course. The only additional stawe we impose is a series of deliv-

erables throughout the semester tied to capabilities afaihet, such as demonstrating navigation,
demonstrating mobile manipulation, demonstrating extlon, etc.. Between the required deliv-
erables, we encourage the students to set their own deadlinelo not require this.

5. Overall Lessons Learned

5.1. Successes

The major success of the course has been the student penimemaespite the fairly demanding
pace of the first semester labs, we have a very high succesmrsitudent teams completing all
parts of the lab. We have never had more than one team in a ®n(@st of 6-8 teams per

semester) not start the course challenge with a completevarikdng solution to each subsystem.
This has been satisfying, because many of our students laaMntited programming experience
or limited experience with embedded systems. As a resulhamganitial concerns about the ability
of the students to understand and implement many of the ptsic&dditionally, student feedback
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indicates a general satisfaction with the coverage of theemad The students feel that they are
getting a broad exposure to a range of issues without beiaguelmed.

We also feel that our efforts in team management and teanmdmlasues have been a success.
We draw students from three main departments: Electricgirteering and Computer Science
(EECS), Aeronautics and Astronautics (Aero/Astro) and Meatal Engineering (MechE). At
the beginning of each semester, we ask the students to cienmqplestionnaires outlining their
background and skill set. We then create teams by combinirgests with complementary back-
grounds, for example, pairing a computer scientist strongrogramming with a mechanical en-
gineering and Aero/Astro student who are strong in contnol systems engineering. In R:SS |,
we also encourage students to work in areas that our outséilecdomfort zone, such as asking
the non-computer-scientists to take on the bulk of the imletation initially, while encouraging
the natural programmers to pick up the soldering iron. This ¢enerally worked extremely well,
and we have had a surprisingly small number of dysfunctishalent teams. In the one case of
a dysfunctional team, we have acted to re-organize the teachthis appeared to solve the team-
ing issues quickly. Additionally, the students report ttegly liked “the freedom”, and the “actual
engineering [practices] that were involved” [1]. Howevas, we discuss below, the teaching of
organization and engineering practices in the R:SS Il clabb&improved.

Finally, we emphasize that there are rarely right answetisd@esign questions. To reinforce this
point, the students are required to debate different desgisions, such as deliberative planning
compared to reactive planning. Our experience has beerthbatudents generally begin the
debate sequence unsure of the point of the exercise, bklglgarn that the literature typically
contains multiple, opposing views on most issues and thgineering decisions are often the
subject for discussion. We have been very pleased at sonte aftident discussions that have
resulted from the debates.

However, not every aspect of the course has been a comptatessu In the following sections we
list some specific lessons that we have learned in develdbisgourse.

The importance of structure Firstly, while we provide the students with substantiatrinstion

in systems development practices, we have imposed rdialitke structure on the process itself,
allowing the students to choose how to organize themse®scerns that the students would not
understand the trade-off between organizational freedodnrigzk of failure have not been real-
ized; post-hoc evaluation suggests that the students @pfgehe substantial amount of freedom
to manage the system development themselves. However, Tayn&CAssociaties provided an
independent evaluation of the first instance of R:SS Il. They @port [1] listed the following
student concerns regarding the teaming freedom:

e “They worked ineffectively with teams.”
e “They worked ineffectively across teams.”
e “They did not develop sufficient or timely processes.”
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e “They assigned or took on responsibilities in ways that aditisupport individu-
als’ learning.”

In order to address these concerns, we have invited adalitiaoulty with experience in working
with large teams to lecture on engineering managementipeact

The spiral development process We pursued a spiral development evaluation process thouigh
the course. However, both faculty and students re-learinedesson that spiral development is
essential across the entire system, not only within specépabilities. Milestones were set on
a per-capability basis, rather than on a complete-systamorpgance basis, allowing teams to
progress at different rates. A key insight (that has beeméhelsewhere in the past) is that
for software projects, no development within a capabilligid be permitted until the complete
system is at the same readiness level.

The Clay report contained the suggestion of continuing thecttre of R:SS | into R:SS Il that
is structuring the course around a series of goals, insteadoand a single “Grand Challenge”
end-goal. This would encourage the spiral development imadd would also allow the students
to fall short of the end goals without feeling like they haidd.

The students also felt (as reported in the final debriefing) they were unable to get a sense
of ownership of the system as a whole: they suggested makiegtse teams were much more
loosely organized, in order to allow them to get a sense of toowse all sub-components and
would lead to faster testing and integration. This looseoization is probably unwieldy give the
amount of development required, however, we have recodnileneed to provide a strong sense
of ownership of different components while building a larggstem.

Theimportant of communication deliverables Finally, a major component of the systems engi-
neering management plan in early version of R:SS | requiredtiidents to present design reviews
to each other regularly. The general upward trend in thesptesion grades indicated that students
were learning from seeing each other present. While the desigews were not sufficient to catch
all development errors, we consider the reviews to be sgtdés that most design or implementa-
tion errors were identified by the students themselveserdkian faculty advisors. We believe the
in-class peer-to-peer design reviews were ultimately nagedul than conventional presentations
to external faculty reviewers would have been.

We have, however, introduced the presentation componenRiIsS | as well, and students now
brief the faculty after each lab is complete. This has gyaatproved both the quality of the lab
analysis and also the student timeliness of completingabg. We have also begun working with
the Writing Program to ensure that the communications delbles are of high quality not only
technically but also from a writing and communication s{aoidt.
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6. Conclusion

This paper presented the first two iterations of a two-sesnasiguence of courses that introduces
students from Aeronautics and Astronautics, ElectricajiBering and Computer Science, and
Mechanical Engineering to the process of conceiving, a@sgy implementing and operating a
mixed hardware-software system.
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