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A teacher says.

It isthe examination that controls
everything, and it is the examination that
directs the unofficial syllabus. ... The
examination is so important that it is
meaningless to do anything in terms of
new pedagogical methods if you don’'t do
something about the examination at the
sametime. The examination represents
the entire pedagogy; it isthe
examination that decides what and how
peoplelearn. If | want studentsto learn
more deeply—and | really do—then |
have to change the examination; that’s
the only way that really works.
(Hogskoleverket [Nationd Agency for
Higher Education], 1997, p. 21)

Teaching and Learning

In modern education an increasing emphasisis put on learning through problem:
oriented or problem-based educationa methods. The underlying ideaiisto improve the
qudity of students learning about complex problems or phenomenain the world through
assgnments that give rich opportunities for active investigation, andysis, and reflection.
Such methods entail an increased use of awide variety of different information sources.
When studying mathematics at the tertiary level, many students use toals like graphing and
symbol-manipulating caculators and a variety of sophigticated computer programs like
Maple, Mathematica, MatLab, and others. Students also use assorted textbooks and other
reference books, and many of them are likely to turn to their family members, friends,
colleagues, or maybe neighbors as a reference group.

One could argue that if the students do seek information in avariety of ways, then the
way these students studly is close to the way people ordinarily work. In many waks of life,
people are valued for the everyday jobs or projects they do, their ability to work with others,
their responses to problem Stuations, and their cgpacity to find tools or information that will
help them to complete an assgnment. In occupations as well asin modern sudies, it is
important to be open and flexible in one' s gpproach. It is desirable and would be naturd if
the examinations in mathematics could mirror thet fact.

Educators in many countries have expressed a desire to change the teaching and
learning of mathematics. It is both obvious and sad that this change is moving forward
dowly:
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Devedopmentsin society will force education, including mathemetics education, to
changeinitsfocus, in its organization, in its use of technology and its content. The
focus will change from teaching to learning, its organization will change from rigid
class based learning to flexible team based learning, technology will be integrated into
the learning process and will support both this new organization of learning and the
learning tasks of theindividua student.

(van Weert, 1994, p. 621)

Over the last decade, we have seen enormous progress in computer-based technologies
for mathematics education, relative computationa power of machines and software,
friendliness of interfaces, and efficiency of connectivity. . .. Despite dl this progress
and promise, the penetration of these technologies in educational practice provesto be
very dow and with greet disparity from placeto place. (Baacheff & Kaput, 1996, pp.
494-495)

Today the dogan “teaching for understanding” is something many, maybe mog,
teachers and educators would support, but few would agree on how to put it into action. And
how could it be otherwise? The word under standing means different things in different
contexts. A full explanation would probably depend upon a complete study of al aspects of
mathemati cs education, because to measure or even identify understanding (whatever its
meaning) would lead usinto the complex area of assessment, and any attempt to teach for,
through, or with understanding requires a detailed andysis of both teaching and learning.

Mathematical understanding

To try to describe and discuss knowledge of mathematics or mathematica
understanding isindeed aformidable task. “Understanding a mathematical proposition—that
isavery vague concept” (Wittgenstein, 1956, p. 5). Y et understanding is used in many ways
in mathematics educetion, often without elaboration. Almost any book about the teaching or
learning of mathematics will have its own description or definition of “understanding
mathematics” Even if the definition is not there, there will definitely be a statement about the
understanding of mathematics.

Since ancient times, people have been concerned about understanding (and lack of
understanding) in connection with mathematics. In the Phaedo of Plato, Socrates challenges
his own understanding:

| cannot satisfy mysdlf that, when oneis added to one, the one to which the additionis
made becomes two, or that the two units added together make two by reason of the
addition. | cannot understand how when separated from the other, each of them was one
and not two, and now, when they are brought together, the mere juxtapostion or
meeting of them should be the cause of their becoming two. (Boyer, 1991, p. 83)

Henri Poincaré (1952) underlined the ambiguity of the meaning of the verb:

What is understanding? Has the word the same meaning for everybody? Does
understanding the demondtration of atheorem consst in examining eech of the
syllogisms of which it is composed in succession, and being convinced that it is correct
and conformsto the rules of the game? In the same way, does understanding a
definition congst Imply in recognizing thet the meaning of al the terms employed are
dready known, and being convinced that it involves no contradiction? (Quoted in
Sierpinska, 1994, p. 72)
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Serpinska (1994) explains that researchers in mathematics education have different
objectives when discussing the question of understanding mathematics. Some objectives are
more pragmatic (to improve understanding), others are more diagnostic (to describe how
sudents understand), and gtill others are more explicitly theoretica or methodologica. What
unites researchersis that they dl have atheory of what understanding is, explicitly expressed
or not. According to Sierpinska, there are at least four different theories or modes of
understanding in mathematics. To begin with, we have theories that are centered on
hierarchies of levels of understanding. One such example isthe van Hidle levels (van Hiele,
1986), but there are others.

Second, we have modd s that describes understanding as agrowing " mental model,”

" conceptua modd,” ” cognitive structure,” or something smilar. The term cognitive structure
comes from Piaget, and severd authors refer to Piaget when congtructing their modd for the
understanding of mathematics.

Third, Seerpinska mentions models that look &t the process of understanding as a
didecticd game or interplay between two ways to apprehend understanding. The didectica
dudism may beillustrated by a concept considered as atool in a problem:-solving process and
at the same time viewed as an object to study, anayze, and develop in atheoretical way. One
well-known example is Skemp's (1978) discrimination between instrumenta and relationd
understanding. According to Skemp, an instrumental understanding iswhat it takes to reach
the right answer, while reaiond understanding means that you understand both what to do
and why. Another way to describe thisis as operationd versus structurd understanding
(Sfard, 1994).

The fourth type of understanding is the historical-empirica perspective in which the
epistemological obstacles are united by today’ s sudents (Sierpinska). Robert and
Schwarzenberger (1991) claim that from a psychological perspective, it is meaningful to
focus on tertiary students' growing ability to reflect on their own learning of mathemetics.
They argue that advanced mathematica thinking includes the ability to separate knowledge of
meathematics from meta- knowledge of mathematics, which includes, for instance, how correct,
relevant, or egant asolution is. They further advocate that students at this advanced leve
should have a great amount of mathematica knowledge, experience of mathematica
strategies, and well-functioning methods together with gptitude for communicating those
skillsat least on abasic level. According to Robert and Schwarzenberger (1991), research
shows that students vary greetly in this respect.

Examination—Knowledge, Control, and Grading

Severd explanaions are commonly given when mathematicians discuss control over
the examinee, questions of security and cheating, and the difference between teaching or
learning and examining. Many mathematicians Smply view the examination as atest and not
as an important opportunity to learn. Logistics and tradition have kept assessment in
meathematics relaying heavily on forma examinations. The discusson in Topic Group 6:
Digtance Learning (http://mcs.open.ac.uk/icme/) at the Ninth International Congress on
Mathemeatical Education in Makuhari, Japan, in 2000 confirmed that the assessment Situation
seemed to be totally separate from the teaching Situation in many mathemetics courses around
the world.

It s;emsthat there are Sgnificant difficulties in changing the examination of
mathematica skillsin the undergraduate years and maybe even little educationa reason to do
s0 as long as mathematicians are happy with the results of the tests. However, examinations
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often test a narrow range of kills, and there is a growing effort to find ways to broaden the
base of illsthat aretested. In addition, textbooks are very often virtua clones of each other,
with long sets of repetitive exercises, which unfortunately encourages a surface gpproach to
learning.

It has become clear from numerous investigations that:

Many students are accomplished at complex routine skillsin science, mathematics and
humanities, including problem solving dgorithms.

Many have appropriated enormous amounts of detailed knowledge, including
knowledge- specific terminology.

Many are able to reproduce large quantities of factua information on demand.
Many are able to pass examinations.

But many are unable to show that they understand what learned, when asking Smple yet
searching questions that test their grasp of the content.

In summary, the research seemsto indicate that, at least for a short period, students
retain vast quantities of information. On the other hand, many seem to forget much of it
and do not appear to make good use of what they do remember. (Ramsden, 1992, pp.
30-31)

Clearly thisis not a new phenomenon. For many years, perhaps as long as teaching has
been practiced, teachers and educators have recognized these facts and have attempted to
influence students’ learning by a number of methods such as changing the style of their
teaching, attempting to give cdlearer explanations, giving more examples, or preparing better
lecture notes, dl on the assumption that mathematics need only be presented logicdly in order
to be learned. However, some research has shown that that students are often more motivated
to learn materia or methodsthat are of direct reevance to passing, and therefore willing to
adapt their learning styles and to do what they perceive is necessary to pass assessment tasks
(Ramsden, 1992). This research indicates that changing teaching methods without due
attention to assessment methods is not sufficient.

Responsibility in Relation to Learning and Achievement

During their schooling, sudents inevitably try to identify, interpret, and follow
authority. Oneinterpretation of this socid behavior isthat the search for trustworthy
authority is part of the human surviva inginct. That ingtinct does not disappear when
sudents begin their univeraty studies, dthough the search for authorities or surviva
structures may be more hidden the older and more sophisticated they get. Figure 1illustrates
the didactica gtuation.

A didactica Stuationisa”game’ in which the teacher negotiates with students
spedific Stuations dlowing an interaction with amilieu, which islikey to lead them
to the congtruction of a given piece of knowledge. (Brousseau, 1997, p. 31)

In most study Situations, there are naturaly other sources of knowledge besides the
student’ s persona knowledge that the student can rely upon.
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Knowledge

Student «<— | Milieu

TEducati onal software
Didacti ca* situation
Teacher
Figure 1. Anillugration of the didactical Stuation. (Adapted from Bdacheff, 1993, p. 156.)

Students who work on opentended problems need feedback from other students or from
ateacher if they are to progress and to Stretch the limits of the activity and their own
mathematical knowledge (Blomhg, 1993). That observation leads to the question of the
didactica contract in the classroom: to the respongbility to learn that al students should have
and to the sources of authority the sudents are likely to identify when working as much with
computers as with textbooks.

In the complexity of a Stuation in which students are mostly away from the teecher when
reflecting on and learning mathematics at their own convenience, using caculaors and
computers from timeto time, it is hard to describe dl the relations that occur. The
discussons in which the students take part nearly aways have a third, slent partner: the
caculator or computer software and itsresult. The third partner in the discussion changes the
didactical contract between the students and the instructor.

Assessment and Taxonomies

Contrary to past views of learning, the cognitive psychology of today (Marton & Booth,
1997) suggests that learning is not linear but proceeds in many directions a once and a an
uneven pace. People of al ages and ability levels constantly use and refine concepts.
Furthermore, there is tremendous variety in the modes and speed with which people acquire
knowledge, in the attention and memory capabilities they can apply to knowledge acquisition
and performance, and in the waysin whichthey can demondrate the persond meaning they
have crested. Current evidence about the nature of learning makes it gpparent that instruction
that strongly emphasizes structured drill and practice on discrete, factua knowledge does
sudentsamgor disservice. Acquidtion of knowledge skillsis not sufficient to make oneinto
a competent thinker or problem solver. People aso need to acquire the disposition to use
their skills and drategies, aswell as the knowledge of when and how to gpply them. These
are appropriate targets for assessment.

If one adds the component of exigting technology, assessment becomes even more
complicated. The support to be provided by technology when students are being assessed isa
difficult issue and the subject of ongoing discussion in severa places around the world. A
phrase often mentioned together with the use of technology is authentic assessment or
authentic performance assessment, which, according to Clarke (1996), refers to mathematical
tasks that are meaningful for the student, represent gpplications of mathematics, and include
activities that are, in some sense, dso carried out by mathematicians. The use of technology
such as computer programs and graphing calculators naturally affects the evaluation Stuation
and aso what we mean by assessment (Webb 1992). An essential consideration is whether

Thomas Lingefjard
Draft: Do not quote without permission from the Author



The Conception-Design-Implementation-Operation project: CDIO

sudents using, say, a computer program when they are learning should therefore be alowed
to interact with that program when being assessed in mathematics. We have to find ways of
assessing what is looked upon as important, rather than assessing what is easily measurable.
In other words, we have to ded with the truism that, in mathematics education, wheat is
assessed iswhat is valued, and what is vaued iswhat is assessed (Arnold, Shiu, & Ellerton,
1996).

Theinvolvement of the studentsin the assessment islikely to shape the educationa
process. Any advice or ingtruction to a student on how to express the intended outcome will
undoubtedly affect the way in which that student and his or her peers present the solution. It
isessentid to sudents learning that they are well informed about the critica points that will
be assessed and about the grading system to be used by the ingtructors. When students
become more involved in the process of evauation, it may be seen as a substantid part of the
didactical contract being negotiated between student and teacher. Through thisinterplay, the
sudents can learn to identify the criteriafor quaitatively good performance. Further, they
can aso learn what is regarded as unsatisfactory, fair, good, or very good performance. It
makes sense to give learners opportunities to anayze strong and weak answers to more open
ended problems (Moran, 1997).

If mathematics teachers dlow group work, discusson, and information gathering in
libraries and over the Internet, and adso want studentsto learn more mathematicsin
collaborative work, then they face great demands on what types of problems they should pose.
Siver and Kilpatrick (1989) argue for the use of open-ended problemsin the assessment of
mathematical problem solving, thereby moving from facts and procedures to concepts and
sructures. A relevant problem should encourage students to make various assumptions and
use various strategies in which technology can serve as an aid but never asagod. The
problems teachers choose aso need to provide the students with opportunities to express what
they have learned in the course and in previous courses. At the same time that the problem
should remain nontrivid in the presence of technologica tools, their use should not be the
only performance component that is essential and leads to success (Lingefjard & Holmauist,
1999).

Important questions for assessment are the following:

»  What mathematica content is most appropriately tested in a technology-enriched
environment?

* How do problems on tests in a technol ogy-enriched environment differ from those on tests
not alowing the use of caculating technology?

»  Should cdculators and computers use be optional or required during testing?

Assessment Methods

Assessment drives what students learn and to some extend aso what teachers lecture
about. 1t controls the students gpproach to learning by directing them to take ether a surface
approach or a deep approach to learning (Ramsden, 1992). The types of questions we give
show students what we vaue and how we expect them to direct and use their time of study.
The educationd systern would benefit sgnificantly if we could create and use questions that
would help to build concepts, dert students to misconceptions and introduce applications and
theoretica ideas. But isit possible to create and classify exam problems according to such
objectives?
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A drong tradition within mathematicsis to classfy and order problemsin terms of
difficulty and student errors. Would it be possible to use ataxonomy to classfy a set of tasks
ordered by the nature of the activity required to complete such atask successfully instead?
Such a dlassfication could have activities which need only a surface approach appearing a
one end, and those activities requiring a deeper approach appearing a the other end. There are
avariety of taxonomies that one could use, depending on the purpose. One of the best known
is Bloom'’ s taxonomy, which gives a hierarchy of concepts (Bloom, 1956).

Benjamin Bloom (1956) and his colleagues managed to organize goas of indruction
into ataxonomy with the objectives to reflect the distinctions teachers make, to be logica and
internaly congstent, to reflect then-current psychology, and to be both neutra and
comprehensve. The Bloom taxonomy was aso designed to fit al school subjects. Inthe
taxonomy, objectives were separated by “domain” (cognitive, affective, and psychomotor,
with the cognitive receiving most attention), related to “educationd behaviors,” and arranged
in ascending order from smple to complex:

a) knowledge

b) comprehension
c) application

d) andyss

€) synthess

f) evdudion

Bloom and his colleagues quoted research evidence to support the clams for the cognitive
domain that “as the behaviors become more complex, the individud is more aware of their
exigence’ (p. 19) and that the individud abilities and skills to be found in the upper levels of
the taxonomy were more efficiently learned than the knowledge at the lowest leve (p. 42).

It did not take long before contrary opinions about the usefulness of Bloom'’ s taxonomy
began to emerge. In the First Internationd Mathematics Study (Husén, 1967, ch. 1), Robert
Thorndike claimed that he found striking differences within each country in the pupils
performance between items classified at different cognitive levels (p. 36).

Research studies that have shown differences between process levels have found such
differences only within topics, and complexity of process has then been equated with
difficulty of test item. (Hill, 1984, p. 227; See dso Seddon, 1978)

In hisaticle The Chain and the Arrow: From the History of Mathematics Assessment,
Jeremy Kilpatrick gives an excellent description of how Bloom' s taxonomy has been used
and misused over the last century:

The Bloom taxonomy has often been seen as fitting mathematics especidly
poorly. As Ormdl (1974) noted in a strong critique of the taxonomy, Bloom's
categories of behavior

are extremely amorphous in relation to mathematics. They cut across the naturdl
grain of the subject, and to try to implement them — at leest at the levd of the
upper school — is a continuous exercise in arbitrary choice. (Ormel 1974, p. 7)
(Kilpatrick 1993, p. 36)

Additiond criticiams have questioned the vaidity of the distinction between cognitive

and affective objectives, the independence of content from process, and the meaning of
objectives isolated from any content (Freudentha 1975; Kilpatrick, 1979). Nonetheless,
the view of mentd abilities and consequently of mathematica thinking and achievement
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as organized in alinear, hierarchica way has been powerful in 20 century assessment
practice. It has deep rootsin our history and our psyches (Romberg, et. d., 1990,
White, 1977). (Kilpatrick, 1993, p. 36)

In summary, it seems that Bloom's taxonomy is good for structuring assessment tasks
but has severe limitations when used for mathematics. A group of mathematicians and
meathemétics educators a the University of Technology in Sidney have therefore constructed
what they cal aMATH taxonomy (mathematical assessment task hierarchy) for the
structuring of assessment tasks (Smith, Wood, Coupland, Stephenson, Crawford, & Ball,
1996).

The MATH taxonomy uses eight different descriptors, gathered in three different
groups (see Figure 2).

Group A Group B GroupC
Factual knowledge Information transfer Justifying and interpreting
Comprehension Application in new Implications, conjectures
situations and comparisons
Routine use of Evaluation
procedures

Figure 22 MATH taxonomy. (From Smith et a. 1996, p. 67.)

It is expected that students enter their tertiary inditutions with mogt if not dl of their
mathematical experience with group A tasks and with just some experience with group B
tasks. Consequently, their experience with group C tasksis severdy limited or even
nonexisent. Nevertheless, one of our ams at the university or tertiary level of mathematics
educetion should be to develop sillsin dl three categories (groups).

Smith et d. (1996) recommend the use of agrid (Figure 3) that combines subject topics with
the descriptors of the MATH taxonomy. The grid entries represents a reference to particular
guestions on the examination paper. This enables the examiner to more reedily determine the
bal ance of assessment tasks on the paper. In their article, Smith et d. dlaim that most of the
mathematics examination papers they anayzed were heavily biased towards group A tasks.

\ Topic| Topicl| Topic2| Topic 3 | Topic4 | Topic5
MATH

Taxonomy

Factual knowledge

Comprehension

Routine use of procedures

Information transfer

Applicationsin new situations

Justifying and interpreting

Implications, conjectures,
comparisons

Evaluation
Figure 3: Grid for MATH taxonomy and subject topics. (From Smith et a. 1996, p. 67.)
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It isvery important to redlize how hard it sometimesisto decide what skills a particular
problem assesses. If astudent is asked to prove atheorem that was presented in alecture, she
or he might very well present a correct answer based upon atrue understanding of the
theorem. The student could have afull understanding of the theorem and its significance, and
maybe also be able to apply the theorem in relevant Situations or prove smilar theorems. On
the other hand, it could aso happen that the student only knows how to reproduce the theorem
inagiven dyle. This syle of assessment cannot discriminate between different types of
learning that can lead to the same response. Naturdly, if we are comfortable with this, then
the assessment pattern is satisfactory. But if we wish to be sure that the sSudent understands
the theorem and has not merely learned it by rote, then we should ask more probing questions.
It isindispensable to be clear about the desired outcomes of the assessment we construct and
to be able to identify the types of assessment tasks that are reliable indicators of these
outcomes.

Theligt of descriptorsin Figure 3 seemsto force dl different types of mathematical
assessment into one of eight categories, which could be seen as arather stereotypic,
quantitetive way to classfy quditative differences. There will definitively be borderline cases
or maybe cases that do not fit comfortably in any category or that fit into more than one
category. Smith et d. (1996) conclude the following:

Itisnot our am to be able to uniquely characterize every concelvable assessment task.
Reather, the aim of the descriptorsisto assst with writing examination questions, and to
alow the examiner’s judgment, objectives and experience to determine the find
evaluation of an assessment task. (p. 68)

The next step in the taxonomy processisto give alist of examplesto illugtrate the
descriptors further. What isimplicit in any such list of categorized problemsfor the tertiary
level is the assumption that the student has prior knowledge in many areas of mathematics
from his or her former sudies. Even more important is the fact that when a students succeeds
in proving atheorem for the firgt time, she or heis dso demondrating an ability to gpply
knowledge to new situations (Group B) but may only be demongtrating a factud recdl (group
A) when proving the same theorem for the second time.

The variety and complexity of atertiary student’s mathematical knowledge are
illugrated in Figure 4. In this very schematic and smple 3-D knowledge profile of a
student’ s knowledge development in mathematics, we can see the different areas of
mathematics such as linear algebra, red andys's, discrete mathematics, et cetera, beginning
from the left at the bottom of the figure. We can dso picture different taxonomy descriptors
such as Factua Knowledge, Information Transfer, and Jugtifying and Interpreting, just to
mention some of the eight descriptorsin the MATH taxonomy. The height of the bars
illugtrate different levels of quality in the students' knowledge such as poor, good, and
excelent or whatever sceisused. The ascending bars illugtrate the fact that the students
accumulate mathematica experience, procedures, routines, and skills from one course to
another. Itisobviousthat the term Quality of Knowledge must be seen as condtructed, in a
very complex way, by different sorts of skills, procedures, and conceptua understanding —
represented by different types of knowledge at different levels.
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Quality of knowledge \!

AW

Taxonomy categories

Mathematical domains or topics

Figure 4: The variety and complexity of atertiary sudent’s mathematical knowledge.

It isvery easy to believe that we must teach students procedures and factua knowledge
first in order to be able to teach and assess degper understanding at the other end of the
taxonomy scae. By accepting this hierarchica view of how knowledge in mathematics (or
any other subject) is built, we dso encourage oursaves and our students to trust in and use
unfortunate education practice:

The idea that knowledge must be acquired first and its application to reasoning and
problem solving can be delayed is a perastent one in educationa thinking.

“Hierarchies’ of educational objectives, athough intended to promote attention to
higher order skills, paradoxicaly feed this belief by suggesting that knowledge
acquistionisafirg sep ina sequence of educationa goas. Therelative ease of
assessing peopl€e’ s knowledge, as opposed to ther thought processes, further feeds this
tendency in educationd practice. (Resnick, 1987, pp. 48-49)

Constructing Assessment Tasks

L et us begin with two examples of the type of question we can use to test mathematica
knowledge including communication skills. The first question requires arelatively short
answer, while the second question is more extended.

1 Two students Carla and Johan are discussing whether or not the matrix
equation MAX =M B representing alinear system has the same solutions as
AX = B. Calathinks they have the same solutions. she saysthat if you start
with AX = B and multiply by M, then you do not change the solutions.
Johan, knowing that matrix equations do not aways behave like ordinary
equations, is more suspicious.

Wheat do you think?
Write aclear judtification of your position and illustrate your argument with
unambiguous examples.
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The next question tests a variety of proficiencies like the trandfer of information from
graphica to numericd representation, factud recdl, the ability to select for rdlevance, and the
ability to communicate idess.

2 The graph of asine curve of the type

y= (a- bx)sn(cx + %)

is plotted in the figure below for particular values of the congtants a, b, c,
and d.

y

A
VAR

) Whét are reasonable values for the parameters a, b, ¢, and d?
i) Describe a physica Stuation to which the sine curve could gpply.
i) What can be said about the roots to the equation y = 0?

iv) What can be said about the domain for the function y?

=

~N

IS

How would you characterize these two questions, according to the MATH taxonomy?
Clearly ether Question 1 or Question 2 are more than purdy factud athough they do require
factua knowledge from the students in order to fully answer or even start to discuss them.
Let me give some further examples of mathematica questionsin different categories of the
MATH taxonomy.

Factual knowledge
Example 1 What is the formulafor the area of acircle?
Example 2 State Cramer’ s rule for solving a system of equations.

Comprehension of factual knowledge
Example Answer true or fase. Let A and B be 2x2 matrices.

Determinant (A + B) = determinant (A) + determinant (B)
Determinant (A xB) = determinant (A) xdeterminant (B)

[ ]
[]
[ ] Deeminant (A xB) = determinant (B xA)
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A student might very well be able to correctly quote and use the relevant definitions but
nevertheless unable to answer these questions correctly. Thisindicates that the ability to
guote a definition may often be ameaningless ill.

Routine use of procedures

Here we must assume that the students have done drill and practice in task smilar to the ones
assessed.

Satement Annxnmatrix A issingular if and only if the determinant (A) * O.
2 1 3
Evduae A=|4 2 1
6 -3 4
Information transfer
Example Here is an attempted proof of L’ Haépitd’srule:
Satement

oy — (-9 . f(¥)
ff(a) = g(a) = O then [im = lim _
) =0 = Othen - o@ ~ Mg (0

Proof

M (9~ f(a)
¥ I M- @

b) ~ im0~ 9(@) (x- a)
@a (g(x) - g(a))/(x- a)

T B 09)

) =lim 0

Explain carefully what is happening in each of the two steps, labeled a), b) and c).
Explain where there could be difficulties with the proof. What conditions should be
added to the statement in order to make the proof valid?

Applications to new situations.

Our assumption here must be that the students have not met any of the results that they
are asked to prove or situations they are asked to apply the results to.

Example
In a certain town 30 percent of the married women get divorced each year
and 20 percent of the single women get married each year. There are 8000
married women and 2000 single women. Assuming that the total population
of women remains constant, how many married women and how many
single women will there be after 1 year? After 2 years? After n years?
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Justifying and interpreting

Example
Here are two arguments, one to show that sn* x —cos™ x = p/2 and the other to show
that SN x + cos? x = p/2. They cannot both be correct (and may both be wrong).
Find and explain the error(s) in the reasoning.
We know that
cosy=9gn(y+ p/2)
for all y, so suppose
X =cosy=4n(y+ p/2)
Then
y=costx (N
and
y+p/2=dn?!x 2)
Subtraction of equation (1) from equation (2) gives the result
snt x—cos!x = p/2

On the other hand, we also know that
cos(p/2- y)=sny
for all y, so suppose
X =cos(p/2- y)=dny
Then
y=sntx (©)
and
p/2- y=cos!x (4)
Addition of equations (3) and (4) gives the result
sntx+ costx=p/2

I mplications, conjectures, and comparisons

The following problem suggest that students use a computer program or a sophisticated
caculator to multiply given matrices and then make conjectures based on the results they
obtained.

Example This problem investigates the similarity of nth powers of matrices. You are given
two sguare matrices A and B and a nonsingular matrix P that satisfies the
relationship B = P 1 AP.

a) Checkthat B= P AP asclaimed.
b) CalculateB?and Pt A%P.
c) CalculateB3and Pt A%P.
d) CalculateB*and P * A*P.

€) Let CandD beany two similar matrices. Make a conjecture
about the similarity of C"and D", for n=1, 2, 3, ...

f) Prove your conjecture.
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Evaluation
Example 1

If S={v1, vo, ..., v} isaset of linearly independent vectorsin an n-
dimensional space, then Sisa basisof V. Isit possibleto prove this
statement? Give reasons for your answer .

Example 2
Here are two definitions of a complex number:

1 The equation x? = —1 has no real roots, but we may invent an
imaginary uniti for whichi?> = —1. We may then define a
complex number as a combination p + iq formed from the two
real numbers p and g and the imaginary unit i.

2 The complex numbers can be defined as the set

C ={(x,¥):x,y e R} together with certain standard arithmetical
operations defined on this set.

Compare the two definitions. Your answer should include:

The circumstances under which each definition would be appropriate.
The relative merits of each definition from a mathematical point of view.
Historical aspects of these definitions.

A demonstration of the equivalence of the definitions.
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