
The Conception-Design-Implementation-Operation project:  CDIO 

Thomas Lingefjärd  1 
 Draft: Do not quote without permission from the Author 

Assessment and Mathematics Examinations in the CDIO project 
Thomas Lingefjärd 

Göteborg University and Chalmers University of Technology 
Sweden 

 

 

 A teacher says: 
It is the examination that controls 
everything, and it is the examination that 
directs the unofficial syllabus. … The 
examination is so important that it is 
meaningless to do anything in terms of 
new pedagogical methods if you don’t do 
something about the examination at the 
same time.  The examination represents 
the entire pedagogy; it is the 
examination that decides what and how 
people learn.  If I want students to learn 
more deeply—and I really do—then I 
have to change the examination; that’s 
the only way that really works. 
(Högskoleverket [National Agency for 
Higher Education], 1997, p. 21) 

 

Teaching and Learning 

In modern education an increasing emphasis is put on learning through problem-
oriented or problem-based educational methods.  The underlying idea is to improve the 
quality of students’ learning about complex problems or phenomena in the world through 
assignments that give rich opportunities for active investigation, analysis, and reflection.  
Such methods entail an increased use of a wide variety of different information sources.  
When studying mathematics at the tertiary level, many students use tools like graphing and 
symbol-manipulating calculators and a variety of sophisticated computer programs like 
Maple, Mathematica, MatLab, and others.  Students also use assorted textbooks and other 
reference books, and many of them are likely to turn to their family members, friends, 
colleagues, or maybe neighbors as a reference group. 

One could argue that if the students do seek information in a variety of ways, then the 
way these students study is close to the way people ordinarily work.  In many walks of life, 
people are valued for the everyday jobs or projects they do, their ability to work with others, 
their responses to problem situations, and their capacity to find tools or information that will 
help them to complete an assignment.  In occupations as well as in modern studies, it is 
important to be open and flexible in one’s approach.  It is desirable and would be natural if 
the examinations in mathematics could mirror that fact. 

Educators in many countries have expressed a desire to change the teaching and 
learning of mathematics.  It is both obvious and sad that this change is moving forward 
slowly: 
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Developments in society will force education, including mathematics education, to 
change in its focus, in its organization, in its use of technology and its content.  The 
focus will change from teaching to learning, its organization will change from rigid 
class based learning to flexible team based learning, technology will be integrated into 
the learning process and will support both this new organization of learning and the 
learning tasks of the individual student.   
(van Weert, 1994, p. 621) 

Over the last decade, we have seen enormous progress in computer-based technologies 
for mathematics education, relative computational power of machines and software, 
friendliness of interfaces, and efficiency of connectivity. . . .  Despite all this progress 
and promise, the penetration of these technologies in educational practice proves to be 
very slow and with great disparity from place to place.  (Balacheff & Kaput, 1996, pp. 
494-495) 

Today the slogan “teaching for understanding” is something many, maybe most, 
teachers and educators would support, but few would agree on how to put it into action. And 
how could it be otherwise? The word understanding means different things in different 
contexts. A full explanation would probably depend upon a complete study of all aspects of 
mathematics education, because to measure or even identify understanding (whatever its 
meaning) would lead us into the complex area of assessment, and any attempt to teach for, 
through, or with understanding requires a detailed analysis of both teaching and learning. 

Mathematical understanding 

To try to describe and discuss knowledge of mathematics or mathematical 
understanding is indeed a formidable task. “Understanding a mathematical proposition—that 
is a very vague concept” (Wittgenstein, 1956, p. 5). Yet understanding is used in many ways 
in mathematics education, often without elaboration. Almost any book about the teaching or 
learning of mathematics will have its own description or definition of “understanding 
mathematics.” Even if the definition is not there, there will definitely be a statement about the 
understanding of mathematics. 

Since ancient times, people have been concerned about understanding (and lack of 
understanding) in connection with mathematics. In the Phaedo of Plato, Socrates challenges 
his own understanding: 

I cannot satisfy myself that, when one is added to one, the one to which the addition is 
made becomes two, or that the two units added together make two by reason of the 
addition. I cannot understand how when separated from the other, each of them was one 
and not two, and now, when they are brought together, the mere juxtaposition or 
meeting of them should be the cause of their becoming two. (Boyer, 1991, p. 83) 

 
Henri Poincaré (1952) underlined the ambiguity of the meaning of the verb: 

What is understanding? Has the word the same meaning for everybody? Does 
understanding the demonstration of a theorem consist in examining each of the 
syllogisms of which it is composed in succession, and being convinced that it is correct 
and conforms to the rules of the game? In the same way, does understanding a 
definition consist simply in recognizing that the meaning of all the terms employed are 
already known, and being convinced that it involves no contradiction? (Quoted in 
Sierpinska, 1994, p. 72) 
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Sierpinska (1994) explains that researchers in mathematics education have different 
objectives when discussing the question of understanding mathematics. Some objectives are 
more pragmatic (to improve understanding), others are more diagnostic (to describe how 
students understand), and still others are more explicitly theoretical or methodological.  What 
unites researchers is that they all have a theory of what understanding is, explicitly expressed 
or not. According to Sierpinska, there are at least four different theories or models of 
understanding in mathematics. To begin with, we have theories that are centered on 
hierarchies of levels of understanding. One such example is the van Hiele levels (van Hiele, 
1986), but there are others.  

Second, we have models that describes understanding as a growing  ”mental model,” 
”conceptual model,” ”cognitive structure,” or something similar.  The term cognitive structure 
comes from Piaget, and several authors refer to Piaget when constructing their model for the 
understanding of mathematics.   

 
Third, Sierpinska mentions models that look at the process of understanding as a 

dialectical game or interplay between two ways to apprehend understanding. The dialectical 
dualism may be illustrated by a concept considered as a tool in a problem-solving process and 
at the same time viewed as an object to study, analyze, and develop in a theoretical way. One 
well-known example is Skemp’s (1978) discrimination between instrumental and relational 
understanding.  According to Skemp, an instrumental understanding is what it takes to reach 
the right answer, while relational understanding means that you understand both what to do 
and why.  Another way to describe this is as operational versus structural understanding 
(Sfard, 1994).  
 

The fourth type of understanding is the historical-empirical perspective in which the 
epistemological obstacles are united by today’s students (Sierpinska). Robert and 
Schwarzenberger (1991) claim that from a psychological perspective, it is meaningful to 
focus on tertiary students’ growing ability to reflect on their own learning of mathematics.  
They argue that advanced mathematical thinking includes the ability to separate knowledge of 
mathematics from meta-knowledge of mathematics, which includes, for instance, how correct, 
relevant, or elegant a solution is.  They further advocate that students at this advanced level 
should have a great amount of mathematical knowledge, experience of mathematical 
strategies, and well-functioning methods together with aptitude for communicating those 
skills at least on a basic level.  According to Robert and Schwarzenberger (1991), research 
shows that students vary greatly in this respect. 

Examination—Knowledge, Control, and Grading 

Several explanations are commonly given when mathematicians discuss control over 
the examinee, questions of security and cheating, and the difference between teaching or 
learning and examining.  Many mathematicians simply view the examination as a test and not 
as an important opportunity to learn.  Logistics and tradition have kept assessment in 
mathematics relaying heavily on formal examinations.  The discussion in Topic Group 6: 
Distance Learning (http://mcs.open.ac.uk/icme/)  at the Ninth International Congress on 
Mathematical Education in Makuhari, Japan, in 2000  confirmed that the assessment situation 
seemed to be totally separate from the teaching situation in many mathematics courses around 
the world. 

It seems that there are significant difficulties in changing the examination of 
mathematical skills in the undergraduate years and maybe even little educational reason to do 
so as long as mathematicians are happy with the results of the tests. However, examinations 
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often test a narrow range of skills, and there is a growing effort to find ways to broaden the 
base of skills that are tested.  In addition, textbooks are very often virtual clones of each other, 
with long sets of repetitive exercises, which unfortunately encourages a surface approach to 
learning. 

It has become clear from numerous investigations that: 

Many students are accomplished at complex routine skills in science, mathematics and 
humanities, including problem solving algorithms. 

Many have appropriated enormous amounts of detailed knowledge, including 
knowledge-specific terminology. 

Many are able to reproduce large quantities of factual information on demand. 

Many are able to pass examinations. 

But many are unable to show that they understand what learned, when asking simple yet 
searching questions that test their grasp of the content. 

In summary, the research seems to indicate that, at least for a short period, students 
retain vast quantities of information.  On the other hand, many seem to forget much of it 
and do not appear to make good use of what they do remember. (Ramsden, 1992, pp. 
30-31)  

Clearly this is not a new phenomenon.  For many years, perhaps as long as teaching has 
been practiced, teachers and educators have recognized these facts and have attempted to 
influence students’ learning by a number of methods such as changing the style of their 
teaching, attempting to give clearer explanations, giving more examples, or preparing better 
lecture notes, all on the assumption that mathematics need only be presented logically in order 
to be learned.  However, some research has shown that that students are often more motivated 
to learn material or methods that are of direct relevance to passing, and therefore willing to 
adapt their learning styles and to do what they perceive is necessary to pass assessment tasks 
(Ramsden, 1992).  This research indicates that changing teaching methods without due 
attention to assessment methods is not sufficient. 

Responsibility in Relation to Learning and Achievement 

During their schooling, students inevitably try to identify, interpret, and follow 
authority.  One interpretation of this social behavior is that the search for trustworthy 
authority is part of the human survival instinct.  That instinct does not disappear when 
students begin their university studies, although the search for authorities or survival 
structures may be more hidden the older and more sophisticated they get.  Figure 1 illustrates 
the didactical situation. 

A didactical situation is a ”game” in which the teacher negotiates with students’ 
specific situations allowing an interaction with a milieu, which is likely to lead them 
to the construction of a given piece of knowledge.  (Brousseau, 1997, p. 31) 

In most study situations, there are naturally other sources of knowledge besides the 
student’s personal knowledge that the student can rely upon. 
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Figure 1: An illustration of the didactical situation.  (Adapted from Balacheff, 1993, p. 156.) 

 

Students who work on open-ended problems need feedback from other students or from 
a teacher if they are to progress and to stretch the limits of the activity and their own 
mathematical knowledge (Blomhøj, 1993).  That observation leads to the question of the 
didactical contract in the classroom: to the responsibility to learn that all students should have 
and to the sources of authority the students are likely to identify when working as much with 
computers as with textbooks. 

In the complexity of a situation in which students are mostly away from the teacher when 
reflecting on and learning mathematics at their own convenience, using calculators and 
computers from time to time, it is hard to describe all the relations that occur.  The 
discussions in which the students take part nearly always have a third, silent partner: the 
calculator or computer software and its result.  The third partner in the discussion changes the 
didactical contract between the students and the instructor. 

Assessment and Taxonomies 

Contrary to past views of learning, the cognitive psychology of today (Marton & Booth, 
1997) suggests that learning is not linear but proceeds in many directions at once and at an 
uneven pace.  People of all ages and ability levels constantly use and refine concepts.  
Furthermore, there is tremendous variety in the modes and speed with which people acquire 
knowledge, in the attention and memory capabilities they can apply to knowledge acquisition 
and performance, and in the ways in which they can demonstrate the personal meaning they 
have created.  Current evidence about the nature of learning makes it apparent that instruction 
that strongly emphasizes structured drill and practice on discrete, factual knowledge does 
students a major disservice.  Acquisition of knowledge skills is not sufficient to make one into 
a competent thinker or problem solver.  People also need to acquire the disposition to use 
their skills and strategies, as well as the knowledge of when and how to apply them.  These 
are appropriate targets for assessment. 

If one adds the component of existing technology, assessment becomes even more 
complicated.  The support to be provided by technology when students are being assessed is a 
difficult issue and the subject of ongoing discussion in several places around the world.  A 
phrase often mentioned together with the use of technology is authentic assessment or 
authentic performance assessment, which, according to Clarke (1996), refers to mathematical 
tasks that are meaningful for the student, represent applications of mathematics, and include 
activities that are, in some sense, also carried out by mathematicians.  The use of technology 
such as computer programs and graphing calculators naturally affects the evaluation situation 
and also what we mean by assessment (Webb 1992).  An essential consideration is whether 
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students using, say, a computer program when they are learning should therefore be allowed 
to interact with that program when being assessed in mathematics.  We have to find ways of 
assessing what is looked upon as important, rather than assessing what is easily measurable.  
In other words, we have to deal with the truism that, in mathematics education, what is 
assessed is what is valued, and what is valued is what is assessed (Arnold, Shiu, & Ellerton, 
1996). 

The involvement of the students in the assessment is likely to shape the educational 
process.  Any advice or instruction to a student on how to express the intended outcome will 
undoubtedly affect the way in which that student and his or her peers present the solution.  It 
is essential to students’ learning that they are well informed about the critical points that will 
be assessed and about the grading system to be used by the instructors.  When students 
become more involved in the process of evaluation, it may be seen as a substantial part of the 
didactical contract being negotiated between student and teacher.  Through this interplay, the 
students can learn to identify the criteria for qualitatively good performance.  Further, they 
can also learn what is regarded as unsatisfactory, fair, good, or very good performance.  It 
makes sense to give learners opportunities to analyze strong and weak answers to more open-
ended problems (Moran, 1997). 

If mathematics teachers allow group work, discussion, and information gathering in 
libraries and over the Internet, and also want students to learn more mathematics in 
collaborative work, then they face great demands on what types of problems they should pose.  
Silver and Kilpatrick (1989) argue for the use of open-ended problems in the assessment of 
mathematical problem solving, thereby moving from facts and procedures to concepts and 
structures.  A relevant problem should encourage students to make various assumptions and 
use various strategies in which technology can serve as an aid but never as a goal.  The 
problems teachers choose also need to provide the students with opportunities to express what 
they have learned in the course and in previous courses.  At the same time that the problem 
should remain nontrivial in the presence of technological tools, their use should not be the 
only performance component that is essential and leads to success (Lingefjärd & Holmquist, 
1999). 
 

Important questions for assessment are the following: 

• What mathematical content is most appropriately tested in a technology-enriched 
environment? 

• How do problems on tests in a technology-enriched environment differ from those on tests 
not allowing the use of calculating technology? 

• Should calculators and computers use be optional or required during testing? 

 

Assessment Methods 

Assessment drives what students learn and to some extend also what teachers lecture 
about.  It controls the students approach to learning by directing them to take either a surface 
approach or a deep approach to learning (Ramsden, 1992).  The types of questions we give 
show students what we value and how we expect them to direct and use their time of study.  
The educational system would benefit significantly if we could create and use questions that 
would help to build concepts, alert students to misconceptions and introduce applications and 
theoretical ideas.  But is it possible to create and classify exam problems according to such 
objectives? 
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A strong tradition within mathematics is to classify and order problems in terms of 
difficulty and student errors.  Would it be possible to use a taxonomy to classify a set of tasks 
ordered by the nature of the activity required to complete such a task successfully instead?  
Such a classification could have activities which need only a surface approach appearing at 
one end, and those activities requiring a deeper approach appearing at the other end. There are 
a variety of taxonomies that one could use, depending on the purpose.  One of the best known 
is Bloom’s taxonomy, which gives a hierarchy of concepts (Bloom, 1956).  

Benjamin Bloom (1956) and his colleagues managed to organize goals of instruction 
into a taxonomy with the objectives to reflect the distinctions teachers make, to be logical and 
internally consistent, to reflect then-current psychology, and to be both neutral and 
comprehensive.  The Bloom taxonomy was also designed to fit all school subjects.  In the 
taxonomy, objectives were separated by “domain” (cognitive, affective, and psychomotor, 
with the cognitive receiving most attention), related to “educational behaviors,” and arranged 
in ascending order from simple to complex:  

a) knowledge 
b) comprehension 
c) application 
d) analysis 
e) synthesis 
f) evaluation 

Bloom and his colleagues quoted research evidence to support the claims for the cognitive 
domain that “as the behaviors become more complex, the individual is more aware of their 
existence” (p. 19) and that the individual abilities and skills to be found in the upper levels of 
the taxonomy were more efficiently learned than the knowledge at the lowest level (p. 42). 

It did not take long before contrary opinions about the usefulness of Bloom’s taxonomy 
began to emerge.  In the First International Mathematics Study (Husén, 1967, ch. 1), Robert 
Thorndike claimed that he found striking differences within each country in the pupils’ 
performance between items classified at different cognitive levels (p. 36).  

Research studies that have shown differences between process levels have found such 
differences only within topics, and complexity of process has then been equated with 
difficulty of test item. (Hill, 1984, p. 227; See also Seddon, 1978) 

In his article The Chain and the Arrow: From  the History of Mathematics Assessment, 
Jeremy Kilpatrick gives an excellent description of how Bloom’s taxonomy has been used 
and misused over the last century:  

The Bloom taxonomy has often been seen as fitting mathematics especially 
poorly. As Ormell (1974) noted in a strong critique of the taxonomy, Bloom’s 
categories of behavior 

are extremely amorphous in relation to mathematics.  They cut across the natural 
grain of the subject, and to try to implement them – at least at the level of the 
upper school – is a continuous exercise in arbitrary choice. (Ormell 1974, p. 7) 
(Kilpatrick 1993, p. 36) 

Additional criticisms have questioned the validity of the distinction between cognitive 
and affective objectives, the independence of content from process, and the meaning of 
objectives isolated from any content (Freudenthal 1975; Kilpatrick, 1979).  Nonetheless, 
the view of mental abilities and consequently of mathematical thinking and achievement 
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as organized in a linear, hierarchical way has been powerful in 20th century assessment 
practice.  It has deep roots in our history and our psyches (Romberg, et. al., 1990, 
White, 1977). (Kilpatrick, 1993, p. 36) 

In summary, it seems that Bloom’s taxonomy is good for structuring assessment tasks 
but has severe limitations when used for mathematics.  A group of mathematicians and 
mathematics educators at the University of Technology in Sidney have therefore constructed 
what they call a MATH taxonomy (mathematical assessment task hierarchy) for the 
structuring of assessment tasks (Smith, Wood, Coupland, Stephenson, Crawford, & Ball, 
1996).  

The MATH taxonomy uses eight different descriptors, gathered in three different 
groups  (see Figure 2). 

 
Group A Group B Group C 

Factual knowledge Information transfer Justifying and interpreting 

Comprehension Application in new 
situations 

Implications, conjectures 
and comparisons 

Routine use of 
procedures 

 Evaluation 

Figure 2: MATH taxonomy. (From Smith et al. 1996, p. 67.) 

It is expected that students enter their tertiary institutions with most if not all of their 
mathematical experience with group A tasks and with just some experience with group B 
tasks.  Consequently, their experience with group C tasks is severely limited or even 
nonexistent.  Nevertheless, one of our aims at the university or tertiary level of mathematics 
education should be to develop skills in all three categories (groups). 

Smith et al. (1996) recommend the use of a grid (Figure 3) that combines subject topics with 
the descriptors of the MATH taxonomy.  The grid entries represents a reference to particular 
questions on the examination paper.  This enables the examiner to more readily determine the 
balance of assessment tasks on the paper.  In their article, Smith et al. claim that most of the 
mathematics examination papers they analyzed were heavily biased towards group A tasks. 

Topic 

 
MATH 
Taxonomy     

Topic 1  Topic 2 Topic 3 Topic 4 Topic 5 

Factual knowledge      

Comprehension      

Routine use of procedures      

Information transfer      

Applications in new situations      

Justifying and interpreting      

Implications, conjectures, 
comparisons 

     

Evaluation      

Figure 3: Grid for MATH taxonomy and subject topics. (From Smith et al. 1996, p. 67.) 
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It is very important to realize how hard it sometimes is to decide what skills a particular 
problem assesses.  If a student is asked to prove a theorem that was presented in a lecture, she 
or he might very well present a correct answer based upon a true understanding of the 
theorem.  The student could have a full understanding of the theorem and its significance, and 
maybe also be able to apply the theorem in relevant situations or prove similar theorems.  On 
the other hand, it could also happen that the student only knows how to reproduce the theorem 
in a given style.  This style of assessment cannot discriminate between different types of 
learning that can lead to the same response.  Naturally, if we are comfortable with this, then 
the assessment pattern is satisfactory.  But if we wish to be sure that the student understands 
the theorem and has not merely learned it by rote, then we should ask more probing questions.  
It is indispensable to be clear about the desired outcomes of the assessment we construct and 
to be able to identify the types of assessment tasks that are reliable indicators of these 
outcomes.   

The list of descriptors in Figure 3 seems to force all different types of mathematical 
assessment into one of eight categories, which could be seen as a rather stereotypic, 
quantitative way to classify qualitative differences.  There will definitively be borderline cases 
or maybe cases that do not fit comfortably in any category or that fit into more than one 
category.  Smith et al. (1996) conclude the following:  

It is not our aim to be able to uniquely characterize every conceivable assessment task.  
Rather, the aim of the descriptors is to assist with writing examination questions, and to 
allow the examiner’s judgment, objectives and experience to determine the final 
evaluation of an assessment task. (p. 68) 

The next step in the taxonomy process is to give a list of examples to illustrate the 
descriptors further.  What is implicit in any such list of categorized problems for the tertiary 
level is the assumption that the student has prior knowledge in many areas of mathematics 
from his or her former studies.  Even more important is the fact that when a students succeeds 
in proving a theorem for the first time, she or he is also demonstrating an ability to apply 
knowledge to new situations (Group B) but may only be demonstrating a factual recall (group 
A) when proving the same theorem for the second time. 

The variety and complexity of a tertiary student’s mathematical knowledge are 
illustrated in Figure 4.  In this very schematic and simple 3-D knowledge profile of a 
student’s knowledge development in mathematics, we can see the different areas of 
mathematics such as linear algebra, real analysis, discrete mathematics, et cetera, beginning 
from the left at the bottom of the figure.  We can also picture different taxonomy descriptors 
such as Factual Knowledge, Information Transfer, and Justifying and Interpreting, just to 
mention some of the eight descriptors in the MATH taxonomy. The height of the bars 
illustrate different levels of quality in the students’ knowledge such as poor, good, and 
excellent or whatever scale is used.  The ascending bars illustrate the fact that the students 
accumulate mathematical experience, procedures, routines, and skills from one course to 
another.  It is obvious that the term Quality of Knowledge must be seen as constructed, in a 
very complex way, by different sorts of skills, procedures, and conceptual understanding – all 
represented by different types of knowledge at different levels.  
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Figure 4: The variety and complexity of a tertiary student’s mathematical knowledge. 

It is very easy to believe that we must teach students procedures and factual knowledge 
first in order to be able to teach and assess deeper understanding at the other end of the 
taxonomy scale.  By accepting this hierarchical view of how knowledge in mathematics (or 
any other subject) is built, we also encourage ourselves and our students to trust in and use 
unfortunate education practice: 

The idea that knowledge must be acquired first and its application to reasoning and 
problem solving can be delayed is a persistent one in educational thinking.  
“Hierarchies” of educational objectives, although intended to promote attention to 
higher order skills, paradoxically feed this belief by suggesting that knowledge 
acquisition is a first step in a  sequence of educational goals.  The relative ease of 
assessing people’s knowledge, as opposed to their thought processes, further feeds this 
tendency in educational practice. (Resnick, 1987, pp. 48-49) 

Constructing Assessment Tasks 

Let us begin with two examples of the type of question we can use to test mathematical 
knowledge including communication skills.  The first question requires a relatively short 
answer, while the second question is more extended. 
 

1 Two students Carla and Johan are discussing whether or not the matrix 
equation MAX = MB representing a linear system has the same solutions as 
AX = B. Carla thinks they have the same solutions: she says that if you start 
with AX = B and multiply by M, then you do not change the solutions.  
Johan, knowing that matrix equations do not always behave like ordinary 
equations, is more suspicious.  
 
What do you think? 
Write a clear justification of your position and illustrate your argument with 
unambiguous examples. 

Taxonomy categories 

Quality of knowledge 

Mathematical domains or topics 
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The next question tests a variety of proficiencies like the transfer of information from 
graphical to numerical representation, factual recall, the ability to select for relevance, and the 
ability to communicate ideas. 
 

2 The graph of a sine curve of the type 
 

y =  (a - b⋅x)sin(c⋅x + 
d
π

) 

 
is plotted in the figure below for particular values of the constants a, b, c, 
and d.     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

i) What are reasonable values for the parameters a, b, c, and d? 
ii) Describe a physical situation to which the sine curve could apply. 
iii)  What can be said about the roots to the equation y = 0? 
iv) What can be said about the domain for the function y? 

 
How would you characterize these two questions, according to the MATH taxonomy?  
Clearly either Question 1 or Question 2 are more than purely factual although they do require 
factual knowledge from the students in order to fully answer or even start to discuss them.  
Let me give some further examples of mathematical questions in different categories of the 
MATH taxonomy. 
 
Factual knowledge 
 Example 1  What is the formula for the area of a circle? 
 Example 2  State Cramer’s rule for solving a system of equations. 
 
Comprehension of factual knowledge 
 Example   Answer true or false. Let A and B be 2x2 matrices. 
 
    [  ] Determinant (A + B) = determinant (A) + determinant (B) 
    [  ] Determinant (A ⋅ B) = determinant (A) ⋅ determinant (B) 
    [  ] Determinant (A ⋅ B) = determinant (B ⋅ A) 

x

y
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A student might very well be able to correctly quote and use the relevant definitions but 
nevertheless unable to answer these questions correctly.  This indicates that the ability to 
quote a definition may often be a meaningless skill. 

 

Routine use of procedures 

Here we must assume that the students have done drill and practice in task similar to the ones 
assessed. 
 Statement  An n x n matrix A is singular if and only if the determinant (A) ≠ 0. 

    Evaluate 
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Information transfer 

Example   Here is an attempted proof of L’Hôpital’s rule: 

    Statement 

     If f(a) = g(a) = 0 then 
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    Proof 
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Explain carefully what is happening in each of the two steps, labeled a), b) and c).  
Explain where there could be difficulties with the proof.  What conditions should be 
added to the statement in order to make the proof valid? 

Applications to new situations. 

Our assumption here must be that the students have not met any of the results that they 
are asked to prove or situations they are asked to apply the results to. 

 
 Example 

In a certain town 30 percent of the married women get divorced each year 
and 20 percent of the single women get married each year.  There are 8000 
married women and 2000 single women.  Assuming that the total population 
of women remains constant, how many married women and how many 
single women will there be after 1 year? After 2 years? After n years? 
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Justifying and interpreting 

Example 
Here are two arguments, one to show that sin-1 x –cos-1 x = π/2 and the other to show 
that sin-1 x + cos-1 x = π/2.  They cannot both be correct (and may both be wrong).  
Find and explain the error(s) in the reasoning. 
We know that 

    cos y = sin (y + π/2) 
for all y, so suppose 

    x = cos y = sin (y + π/2) 
 Then 
    y = cos-1 x      (1) 

and 
    y + π/2 = sin-1 x    (2) 

Subtraction of equation (1) from equation (2) gives the result 
    sin-1 x – cos-1 x = π/2 

 
On the other hand, we also know that  

    cos (π/2 − y) = sin y 
for all y, so suppose 

    x = cos (π/2 − y) = sin y 
Then 

    y = sin-1 x      (3) 
and 
   π/2 − y = cos-1 x    (4) 
Addition of equations (3) and (4) gives the result 
   sin-1 x + cos-1 x = π/2 

 

Implications, conjectures, and comparisons 

The following problem suggest that students use a computer program or a sophisticated 
calculator  to multiply given matrices and then make conjectures based on the results they 
obtained. 

Example This problem investigates the similarity of nth powers of matrices.  You are given 
two square matrices A and B and a nonsingular matrix P that satisfies the 
relationship B = P -1 AP. 

a) Check that B = P -1 AP  as claimed. 

b) Calculate B2 and P -1 A2P. 

c) Calculate B3 and P -1 A3P. 

d) Calculate B4 and P -1 A4P. 

e) Let C and D be any two similar matrices. Make a conjecture 
about the similarity of C 

n and Dn, for n = 1, 2, 3, … 

f) Prove your conjecture. 
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Evaluation 

Example 1 

If S = {v1, v2, …, vn} is a set of linearly independent vectors in an n-
dimensional space, then S is a basis of V.  Is it possible to prove this 
statement? Give reasons for your answer.  

 

 Example 2 

    Here are two definitions of a complex number: 

1 The equation x2 = –1 has no real roots, but we may invent an 
imaginary unit i for which i2 = –1.  We may then define a 
complex number as a combination p + iq formed from the two 
real numbers p and q and the imaginary unit i. 

2 The complex numbers can be defined as the set  
CC = {(x, y):x, y ε RR} together with certain standard arithmetical 
operations defined on this set. 

 

Compare the two definitions. Your answer should include: 

The circumstances under which each definition would be appropriate.  
The relative merits of each definition from a mathematical point of view.  
Historical aspects of these definitions. 
A demonstration of the equivalence of the definitions. 
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