/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Table Normal";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0in 5.4pt 0in 5.4pt;
mso-para-margin:0in;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:12.0pt;
font-family:Cambria;
mso-ascii-font-family:Cambria;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Cambria;
mso-hansi-theme-font:minor-latin;}
Tomorrow’s engineers are required to have a good balance between deep working knowledge of engineering sciences and engineering skills. In the Bachelor Aerospace Engineering at TU Delft, students are educated to master these competences so that they are ready to engineer when they graduate. The bachelor curriculum has three mainstreams of about equal study load: Aerospace Design, Aerospace Engineering & Technology, and Basic Engineering Sciences. The Aerospace Design stream is built up semester after semester of a design project and an accompanying design course.
The main objectives of the design projects are related to contextual learning, to being a mental organiser for the students, to learning by doing together, and to learning and practicing academic and engineering skills. Over the years of study the design projects increase in complexity and openness, from knowing to application, synthesis and evaluation, from tangible to abstract, from mono- to multidisciplinary, from mostly individual to team work.
All projects exploit the factors that promote intrinsic motivation (challenge, curiosity, control, fantasy, competition, cooperation, and recognition). To assure that the intrinsic motivation factors and the semester themes are well addressed, each design project is characterised by a storyline, professional role, client, real-life problem, engineering process, and certain attainment levels of engineering skills.
The projects make use of 45 well-equipped student project spaces in a dedicated building and laboratories like wind tunnels, a structures and materials laboratory, a study collection of aircraft and spacecraft parts and subsystems, and a flight simulator. The organisation of the six design projects for 300-440 students per project challenges the resources of the academic staff and the logistics of the project and lab spaces.